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Abstract. Substructural type systems are growing in popularity be-
cause they allow for a resourceful interpretation of data which can be
used to rule out various software bugs. Indeed, substructurality is fi-
nally taking hold in modern programming; Haskell now has linear types
roughly based on Girard’s linear logic but integrated via graded function
arrows, Clean has uniqueness types designed to ensure that values have
at most a single reference to them, and Rust has an intricate ownership
system for guaranteeing memory safety. But despite this broad range
of resourceful type systems, there is comparatively little understanding
of their relative strengths and weaknesses or whether their underlying
frameworks can be unified. There is often confusion about whether lin-
earity and uniqueness are essentially the same, or are instead ‘dual’ to
one another, or somewhere in between. This paper formalises the re-
lationship between these two well-studied but rarely contrasted ideas,
building on two distinct bodies of literature, showing that it is possible
and advantageous to have both linear and unique types in the same type
system. We study the guarantees of the resulting system and provide
a practical implementation in the graded modal setting of the Granule
language, adding a third kind of modality alongside coeffect and effect
modalities. We then demonstrate via a benchmark that our implementa-
tion benefits from expected efficiency gains enabled by adding uniqueness
to a language that already has a linear basis.
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1 Introduction

Linear types [15, 57] and uniqueness types [5, 47] are two influential and long-
standing flavours of substructural type system. As these approaches have devel-
oped, it has become clear in the community (both in folklore and the literature)
that these are closely related ideas. For example, the chapter on substructurality
in Advanced Topics in Types and Programming Languages [62] describes unique-
ness types as “a variant of linear types”. This framing is supported by various
works which, for example, make reference to “a form of linearity (called unique-
ness)” [33] or other such statements of equality or similarity [38].

But reading a different set of papers gives a contrasting impression that
linearity and uniqueness are not the same but in some sense dual to one another,
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and with different behaviour for at least some applications. Recent work on linear
types for Haskell [7] describes the two concepts as being “at their core, dual” and
later having a “weak duality”. The impression that these two approaches behave
differently is backed up by much of the theoretical work on uniqueness types,
with one paper stating that “although both linear logic and uniqueness typing
are substructural logics, there are important differences” [56], closely followed
by a tantalising mention of the fact that “some systems based on linear logic are
much closer to uniqueness typing than to linear logic”.

It is clear, at least, that both linear types and uniqueness types are substruc-
tural type systems: they both restrict structural rules (in particular, contraction
and weakening) of type systems that are the Curry-Howard counterparts to reg-
ular intuitionistic logic. This captures the well-known maxim that “not all things
in life are free” [61]; many kinds of data behave resourcefully, and are subject
to constraints on their usage. Sensitive data should not be infinitely duplicated
and passed around freely, file handles should not be arbitrarily discarded without
being properly closed, and communication channels should not be used without
adherence to a fixed protocol, to name a few!

Thanks to these clear benefits, notions of substructurality are slowly but
surely making their way into the programming ecosystem, with languages such
as Haskell [7], Idris [9], Clean [47], Rust [24], ATS [65], and Granule [36] all
having type systems that behave substructurally in some way. What is not clear,
however, is what exactly the relationship is between these varying systems; for
instance, it is not obvious how to relate linearity and uniqueness. Linear types,
though they themselves come in various forms, are most often based on the linear
logic of Girard [15], and in the strictest sense they treat values as resources which
must be used exactly once and never again. On the other hand, uniqueness types
are named as such because they aim to ensure that values are guaranteed to have
at most one reference to them [40,45,47,48,55,56], with a view towards allowing
them to be safely updated in-place. Do these two requirements always coincide,
or are there cases where they diverge?

In this paper, we resolve this long-standing confusion, building on two distinct
bodies of literature to develop an accurate understanding of the contexts in which
linear and uniqueness types behave the same or behave differently, and their
relative strengths and weaknesses. Our primary contributions are as follows:

– In Section 2, we discuss the contrasting understandings of the relationship
between linearity and uniqueness, and draw together aspects of these view-
points to intuitively describe the link between these concepts.

– In Section 3, we formalise these notions by developing a unified calculus and
type system that incorporates linear, unique, and Cartesian (unrestricted or
non-unique/non-linear) types all at once, building on the linear λ-calculus.
We give an operational model via a heap semantics which allows us to prove
various key operational guarantees for both linearity and uniqueness.

– In Section 4, as a proof of concept, we implement uniqueness types into
the language Granule which already has a linear basis, introducing a third
flavour of modality alongside the graded comonadic (coeffectful) and graded
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monadic (effectful) modalities already present in the language. The imple-
mentation enables the classic primary use of uniqueness: access to safe in-
place update in a functional language without working inside a monad.

– In Section 4.2, we confirm the performance benefits of uniqueness types by
benchmarking the performance of arrays which allow for in-place update.
We generate impure Haskell code from our Granule implementation in order
to demonstrate that further efficiency can be gained via adding uniqueness
types even when your language is already linear at its core.

Section 5 and Section 6 provide related work and discussion, including relation
to ideas in Rust. Various additional details are collected in the appendix [28],
including proofs and collected reduction rules for the operational semantics. We
also provide an artifact [29], so that the interested reader can experiment with
code examples in Granule and reproduce our benchmarks for themselves.

2 Key Ideas

It is clear that linear and uniqueness types both involve restricting the sub-
structural rules of intuitionistic logic, but what remains unclear is the exact
relationship between the two concepts. This section discusses two widespread
understandings of their relationship, both of which are accurate in some respects
but fail to capture some key similarities and differences. We then combine aspects
of both viewpoints to systematically relate linearity and uniqueness.

2.1 Are linearity and uniqueness (essentially) the same?

Perhaps the most well-known substructural types are linear types, which have
been studied for decades in the literature [57,62] as the Curry-Howard counter-
part of linear logic [15]. Several languages have implemented linear type systems
over the years, including ATS [65], Alms [52] and Quill [32], and they are steadily
making their way into the mainstream via extensions to languages like Haskell [7].
Examples of linearity in this paper will focus on the functional language Gran-
ule [36] (whose syntax resembles Haskell), since values in Granule are linear by
default making the examples less complex, and also because Granule will later
be the foundation upon which we build our unified calculus.

Strictly, linear types treat values as resources which must be used once and
then never again. For instance, we can type the identity function, since it binds a
single variable and then uses it, but the K combinator (which discards one of its
arguments) is not linearly typed. Thus linearity is a claim about the consump-
tion of a resource: a linear type is a contract, which says that we must consume a
value that we are given exactly once. Consider the following classic example (ren-
dered in Granule) of a function which cannot be represented using linear types,
assuming an interface where eat : Cake → Happy and have : Cake → Cake:

Ill-typed Granule

1 impossible : Cake → (Happy, Cake)

2 impossible cake = (eat cake, have cake)
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Note that Granule’s function type → is the type of linear functions, more tra-
ditionally written (. The above function is ill-typed and the Granule compiler
will brand it with a linearity error; this is because the value of type Cake passed
into the function is a linear resource, and the body of the function requires us
to duplicate it (via contraction), which is forbidden. Thus, linear types remind
us of the familiar aphorism: you can’t have your cake and eat it too.

Uniqueness types, on the other hand, are primarily aimed at ensuring that
values have only a single reference to them, which is a useful property for ensuring
the safety of updating data in-place. But is this uniqueness restriction really so
different from the constraints of linearity?

One of the most familiar languages featuring uniqueness types is Clean [47],
which uses uniqueness for mutable state and input/output, in contrast to lan-
guages such as Haskell which use monads for similar purposes. We shall use
Clean for our uniqueness examples for the moment, before we introduce our own
implementation of uniqueness in Section 4. Consider the following in Clean:

Ill-typed Clean

1 impossible :: *Coffee -> (*Awake, *Coffee)

2 impossible coffee = (drink coffee, keep coffee)

We use coffee instead of cake to distinguish unique values from the linear values
of the Granule example, but notice this function has exactly the same structure
as the previous example. The operator ∗ denotes a unique type, since unre-
stricted values are the default in Clean. Similarly to Granule, when presented
with this function Clean gives a uniqueness error; the argument of type *Coffee

is duplicated, and so we can no longer guarantee there is only one reference to
it upon exiting the function. Think of a *Coffee as having been freshly poured;
we cannot continue acting as though it is fresh once some of it has been drunk!

So far, it seems that the concepts of linearity and uniqueness are very similar
after all, as is often claimed. However, neither of these examples uses unrestricted
values; we only see values that are linearly typed or uniquely typed. In fact, in a
setting where all values must be linear, we can also guarantee that every value
is unique, and vice versa! Intuitively, if it is never possible to duplicate a value,
then it will never be possible for said value to have multiple references. It is
when we also have the ability for unrestricted use (non-linear/non-unique) that
differences between linearity and uniqueness begin to arise, as we will soon see.

Much of the classic literature on linear types makes mention of the idea that
linearity can be used for tracking whether a value has only one reference, though
we know by now that this more accurately describes uniqueness ; indeed, one of
the oldest such papers by Wadler, which has been (rightly) hugely influential,
states that “values of linear type have exactly one reference to them, and so
require no garbage collection” [57, p.2]. However, systems akin to the one dis-
cussed by Wadler [4,18,46] crucially separate values into two completely distinct
and (mostly) disconnected linear and non-linear worlds. In this context, a linear
value can never have been duplicated previously and thus must also obey the
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conditions required for uniqueness. Therefore, it is correct to say that a value of
linear type has exactly one reference in such a system.

This issue is further discussed in a later article by Wadler [58], though unique-
ness types had yet to be invented and so the concept is never referred to by this
name. Linear types based on linear logic are defined in Section 3 of said article,
for which linearity behaves as we understand it: a value having linear type guar-
antees that it will not be duplicated or discarded, but the notion of dereliction
allows a non-linear variable to be used linearly going forwards [15]. As Wadler
states, “dereliction means we cannot guarantee a priori that a variable of linear
type has exactly one pointer to it” [58, p.7], and so we cannot guarantee unique-
ness of reference in a system based upon linear logic. In Section 7, Wadler goes
on to define steadfast types, where dereliction and promotion are again restricted
to recover the uniqueness guarantee in addition to the linearity restriction 3.

However, never being able to duplicate or discard any value is an overly
restrictive view of data, preventing many valid uses of various kinds of informa-
tion, and so modern languages with linear types therefore generally do provide a
mechanism for non-linearity rather than working in the ‘steadfast’ style. Linear
logic provides the ! modality (also called the exponential modality), which allows
the representation of non-linear (unrestricted) values. In Granule, we can use this
modality to rewrite the previous example into one that is now well-typed:

Granule

1 possible : !Cake → (Happy, Cake)

2 possible lots = let !cake = lots in (eat cake, have cake)

We can think of !Cake values as representing an infinite amount of cake, which
is made available once we eliminate the modality (via the let) to get an unre-
stricted (non-linear) variable cake. The functions eat and have are linear func-
tions, so each application in isolation views cake linearly, by an implicit use of
dereliction in the type system. Crucially, from an unrestricted value we can pro-
duce a linear value, so we can impose the restriction of linearity whenever we
like. However it is not possible to produce an unrestricted value from a linear
one. This restriction means that linear types are useful for representing resources
such as file handles, as in the following example:

Granule

1 twoChars : (Char, Char) <IO>

2 twoChars = let -- do-notation like syntax

3 h ← openHandle ReadMode "someFile";

4 (h, c1) ← readChar h;

5 (h, c2) ← readChar h;

6 () ← closeHandle h

7 in pure (c1, c2)

3 The concept of steadfastness coincides with the notion of “necessarily unique” used
in languages such as Clean, where a necessarily unique value is one that is unique
and also can never be made non-unique [47].
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Here, we open a file handle, read two characters from it, and then close it. The
linearity of the handle ensures that once we have created it, we must close it
properly, and also that we cannot duplicate it along the way. But linearity is
less useful in other circumstances. As an example, consider the case of mutable
arrays. Discarding an array will not cause any problems,4 so a linear array would
be too restrictive and not allow for some valid use cases; affine types allow
discarding behaviour by adding back in weakening [52]. But in order to be able
to mutate an array we need to be able to guarantee that no other references
to it exist, and in this sense linearity is not strong enough; any linear value
could have previously been a non-linear one that was duplicated any number of
times before being specialised (via dereliction) to a linear type. For representing
mutable arrays, we are better served by considering uniqueness types.

Uniqueness behaves differently to linearity in the context of a system with
the ability to describe unrestricted values. If we have an unrestricted value, we
certainly cannot produce a unique one from it which would violate the guarantee
of uniqueness; we cannot claim that a value has only one reference to it when
it could have been duplicated and manipulated elsewhere. But conversely, if we
have a unique value, there is no harm in dropping this guarantee and producing
an unrestricted value; a non-unique value does not need to make any promises
about how many references may exist. Thus, in Clean we can write:

Clean

1 possible :: *Coffee -> (Awake, Coffee)

2 possible coffee = (drink coffee, keep coffee)

Here, we require that the input is unique (it has type *Coffee), so for the function
to be well-typed we can no longer claim this value is unique once it reaches
the output, as it has been duplicated along the way (and it now must have
type Coffee). The information here is flowing in the opposite direction than
for linearity; the possible function in Clean would be ill-typed if we replaced
unique values with linear ones, and vice versa for the earlier Granule example.
This directionality allows us to represent mutable arrays much more easily with
uniqueness. For example, the following destructively fills a real-valued array:

Clean

1 fill :: *{Real} Int -> *{Real}
2 fill a1 0 = a1

3 fill a1 i

4 # f = toReal i

5 # a2 = {a1 & [i - 1] = f} // write f to index i-1 in a1

6 = fill a2 (i - 1) // recurse with unique array a2

4 One may worry that discarding an array could cause space leaks, but this can be
tempered via garbage collection. If a non-linear value will no longer be used we know
statically that it can be garbage collected, and thus it is harmless to reuse the space
occupied by this value going forwards. This will allow us to update unique objects
such as arrays destructively without being concerned about referential transparency.
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Here, we take in a unique array of floating point numbers and some unrestricted
integer value, and fill the first cells of the array with the numbers up to that
value. Here we know that it is safe to write to the array because it is unique, so
no other references to it can exist elsewhere; once we are finished with the array
later on, however, it is fine to discard it, as with an array in most other functional
programming languages, which would not be possible if our array was linearly
typed. This however does mean that uniqueness types are not appropriate for
the earlier example of file handles—we cannot ensure that a unique file handle
is closed, as it can be discarded at any time.

In summary, linearity and uniqueness provide the same guarantees up until
a system also has a notion of unrestricted value (non-linear or non-unique). The
complementary but distinct use cases shown above make it clear that it would be
valuable to have both linear and unique values together in a single language, but
this has previously not been possible. Our main contribution is a core calculus
that allows linearity and uniqueness to coexist and interact, demonstrated also
via an implementation in the Granule language. Next we consider the question
of duality, and how to formally describe how linearity and uniqueness differ.

2.2 Are linearity and uniqueness dual?

It is common in folklore and in the literature to describe linearity and uniqueness
as somehow dual to one another (see e.g., [32, 52]) but rigorous versions of this
statement are more rarely found. The earliest formalisation of uniqueness is from
Harrington’s ‘uniqueness logic’ [20], which we use as a foundation for much of the
following. Harrington constructs a logic which is on the surface much like linear
logic, but instead of the ! modality for non-linearity it includes a ◦ modality for
non-uniqueness which differs from non-linearity in its introduction rule.

In linear logic, the ! modality acts as a comonad, such that the introduction
of ! on the right of a sequent means that all formulae on the left of a sequent
must also have ! applied, whilst introduction of ! on the left is unrestricted:

!Γ ` P
!Γ ` !P

!R
Γ, P ` Q
Γ, !P ` Q

!L

(also known as storage and dereliction respectively [16]). In contrast, the non-
uniqueness modality ◦ of Harrington acts as a monad, meaning that introduction
of ◦ on the right is unrestricted but introduction of ◦ on the left of a sequent
means that all formulae on the right of the sequent must also have ◦ applied:

Γ ` P
Γ ` P ◦

◦R
Γ, P ` Q◦

Γ, P ◦ ` Q◦
◦L

The non-uniqueness modality ◦ then has the following structural rules for con-
traction and weakening, which are conspicuously identical to those for the !
modality representing non-linearity:

Γ, P ◦, P ◦ ` R
Γ,P ◦ ` R

◦C
Γ ` R

Γ,P ◦ ` R
◦W

Γ, !P, !P ` R
Γ, !P ` R

!C
Γ ` R

Γ, !P ` R
!W
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One might be tempted to think that because the introduction rules for ◦ behave
dually to those of !, the modalities are simply dual to one another, and thus
non-uniqueness is equivalent to linear logic’s ?. But since the contraction and
weakening rules for ◦ are the same as those for !, this is not quite the case; ◦
behaves dually to ! in some ways but not in others. Formally, ◦ is a monad while
! is a comonad, but both are comonoidal, whereas ? is monoidal.

Linear logic allows us to derive !P ` P (from dereliction), which agrees with
our notion of linearity where non-linear values can be restricted to behave linearly
going forwards but if we have a linear value it must remain linear; uniqueness
logic conversely allows us to derive P ` P ◦, formalising our concept of uniqueness
where we can forget the uniqueness guarantee and turn a unique value into a
non-unique one, but if we have a non-unique value we cannot go back.

We can now make more precise the intuitive notion we have developed, which
suggests that linear types provide a restriction on what can be done with a value
‘in the future’ whilst uniqueness types provide a guarantee about what has been
done with a value ‘in the past’. The distinction becomes clearer when we consider
substitutions, which are generated by β-reductions.

Substitutions are the same whether we are working with linear logic or
uniqueness logic, as the rules for functions are identical, but the difference arises
when thinking about what it is possible to know about a value in one logic com-
pared to the other. Given a linear value, we know that substituting this value
into an expression will preserve linearity, as there is no way to transform a linear
value into a non-linear one. Conversely, given a unique expression then we know
that any values substituted in will not affect the uniqueness guarantee, as there
is no way to transform a non-unique value into a unique one. Thus ‘future’ refers
to outgoing substitutions, while ‘past’ refers to incoming substitutions.

So if linearity and uniqueness do in fact behave the same in some ways but
not all, and they do in fact behave dually in some ways but not all, then what
is the overall takeaway? What statement can we make about the relationship
between their behaviour that reconciles these two viewpoints?

Takeaway. Linearity and uniqueness behave dually with respect to composition,
but identically with respect to structural rules, i.e., their internal plumbing.

In other words, internally the non-linear and non-unique modalities are both
comonoidal, so they allow for the same behaviour of contraction and weakening
for values that are wrapped inside them.

But the duality arises upon considering how we can map into and out of
these modalities; we can map out of the non-linear modality and retrieve a linear
value, but we can never map into it, giving the modality its familiar comonadic
structure. Conversely, we can map a unique value into the non-unique modality
to allow for contraction and weakening, but we can never map back out of it,
which explains the dual monadic behaviour of this modality.

It is this understanding of the similarities and differences between linearity
and uniqueness that will allow us to unify them, and have values of both flavours
present in a single type system, which will be our goal for the next section.
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3 The Linear-Cartesian-Unique Calculus

We now consider how to represent both linearity and uniqueness in the same
system. The first choice to make is whether our base values will be linear or
unique5, as this will influence the directionality of the modalities we need to
include in the calculus. Here we present a system where linearity is the base and
uniqueness is a modality, as opposed to one where uniqueness is the base and
linearity is a modality, for two reasons.

– The first reason is pragmatic; we later implement our approach in Granule,
which already has linear values as the default. Therefore, including unique-
ness as an additional modality in the system will require far fewer changes to
the language, since a unique base would most likely require a redesign. More-
over, languages with uniqueness types like Clean generally have non-unique
values as their default, with uniqueness having to be specifically annotated;
a system with a uniqueness modality will also map more closely onto these
languages than one where uniqueness is the basis.

– The second reason is that developing a sound calculus with a unique base
is more complex. Consider such a hypothetical calculus with a modality ◦
representing unrestricted values and a modality • representing linear values.
If we construct a product of linear values (a•, b•), then this product is unique
(rather than linear), so we can promote to an unrestricted product (a•, b•)

◦

and freely duplicate the product, though the values contained within are
linear. A linear base avoids this problem (among others) as products being
linear by default means that their usage is maximally restricted, so there is
no circumventing either a uniqueness guarantee via their construction or a
linearity restriction via their duplication.6

Given a linear basis, we formalise the idea that we can map from unique to
non-unique and from non-linear to linear. The key insight is that we treat non-
linearity and non-uniqueness as the same state as both these states are un-
restricted; we can do anything we like with, and have no guarantees for, an
unrestricted value. We write ∗P for a P with a uniqueness guarantee, similar to
the syntax of Clean and to avoid confusion with Harrington’s ◦ modality for non-
uniqueness. The resulting calculus, which we call the Linear-Cartesian-Unique
calculus (or LCU for short), builds on (intuitionistic multiplicative exponential)
linear logic with additional rules for uniqueness.

5 We choose a substructural basis over an unrestricted one since this more closely maps
to both linear and uniqueness logic, where values have substructural behaviour by
default unless they are wrapped in a modality.

6 A similar problem arises from the application of unique functions, and this has been
a thorn in the side of developers of uniqueness type systems for some time. The
solution applied in Clean is that any function with unique elements in its closure is
“necessarily unique”, meaning it cannot be subtyped into a non-unique function and
applied multiple times. Handily, this coincides with the notion of a linear function,
which is why our calculus having a linear base also avoids this problem.
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Syntax LCU’s syntax is that of the linear λ-calculus with multiplicative products
and unit (first line of syntax below) with terms for introducing and eliminating
the ! modality and working with the uniqueness modality (second line):

t ::= x | λx .t | t1 t2 | (t1, t2) | let (x, y) = t1 in t2 | unit | let unit = t1 in t2

| !t | let !x = t1 in t2 | &t | copy t1 as x in t2 | ∗t (terms)

The meaning is explained in the next section with reference to typing.

3.1 Typing

Typing judgments are of the form Γ ` t : A, with types A defined:

A,B ::= A( B | A⊗ B | 1 | !A | ∗A (types)

Thus our type syntax comprises linear function types A( B , linear multiplica-
tive products A ⊗ B , a linear multiplicative unit 1, the non-linearity modality
!A and the uniqueness modality ∗A.

Typing contexts are defined as follows:

Γ ::= ∅ | Γ, x : A | Γ, x : [A] (contexts)

which are either empty, or contexts extended with a linear assignment x : A or
contexts extended with a non-linear assignment denoted x : [A]. This marking
of assumptions in a context as linear or non-linear (see Terui [50]) is one way to
guarantee substitution is admissible (avoiding, for example, issues pointed out
by Wadler where substitution is not well-typed if care is not taken [59, 60], an
issue noted also by Prawitz in 1965 in the context of S4 modal logic [42]).

Throughout, the comma operator , concatenates disjoint contexts.
We introduce the key typing rules inline. Figure 1 collects the full set of rules.

The linear λ-calculus core is typed by the following three rules:

[Γ ], x : A ` x : A
var

Γ, x : A ` t : B

Γ ` λx .t : A( B
abs

Γ1 ` t1 : A( B Γ2 ` t2 : A

Γ1 + Γ2 ` t1 t2 : B
app

In the case of var, a linear variable is used but the rest of the context must be
marked as non-linear, denoted by [Γ ] which marks all assumptions as non-linear.

Definition 1 (All non-linear assumptions). A context Γ is denoted as con-
taining only non-linear assumptions by writing [Γ ] in the typing rules, where [∅]
and [Γ ] =⇒ [Γ ], x : [A].

In the case of app, the two subterms are typed in different contexts which
are then combined via context addition.

Definition 2 (Context addition). The partial operation + on contexts is the
union of two contexts as long as they are disjoint in their linear assumptions and
any variables occurring in both contexts are both non-linear assumptions, i.e.

Γ1 + Γ2 = Γ1 ∪ Γ2 iff ∀x ∈ dom(Γ1) ∩ dom(Γ2) =⇒ ∃A.Γ1(x) = Γ2(x) = [A]
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The non-linear modality ! has the following introduction and elimination rules
and related dereliction rule:

[Γ ] ` t : A

[Γ ] ` !t : !A
!I

Γ1 ` t1 : !A Γ2, x : [A] ` t2 : B

Γ1 + Γ2 ` let !x = t1 in t2 : B
!E

Γ, x : A ` t : B

Γ, x : [A] ` t : B
der

The left-most rule captures the idea that a computation t of value A can be used
non-linearly, by ‘promoting’ it to !A as long as all its inputs are also non-linear,
denoted by [Γ ] in the context. The middle rule eliminates a non-linear modality
(a capability to use an A value non-linearly) by composing it with a variable x
which is non-linear in t2. These rules are accompanied by the ‘dereliction’ rule
that says non-linear variables can be treated as linear variables.

So far everything is standard from other linear type systems. We now move
to our uniqueness modality which has two syntactic constructs: borrow and copy :

Γ ` t : ∗A
Γ ` &t : !A

borrow
Γ1 ` t1 : !A Γ2, x : ∗A ` t2 : !B

Γ1 + Γ2 ` copy t1 as x in t2 : !B
copy

The borrow rule maps a unique value to a non-linear value, allowing a uniqueness
guarantee to be forgotten. In terms of the operational semantics (see Section 3.4),
this causes evaluation of t before the borrow. Next, the copy rule says that a
non-linear value of type A can be copied to produce a unique A which is used by
t2; the input is required to be non-linear so that we cannot circumvent a linearity
restriction by copying a linear value, and the output is required to be non-unique
so that we cannot leverage the copy to smuggle out a value which pretends to
be truly unique. These rules in turn are accompanied by the ‘necessitation’ rule
that says values can be assumed unique as long as they have no dependencies:

∅ ` t : A

[Γ ] ` ∗t : ∗A
nec

The borrow and copy rules in this logic suggest a monad-like relationship between
the ! and ∗ modalities, with the borrow rule representing the ‘return’ of the
monad and the copy rule likewise acting as the ‘bind’. The ∗ modality is not
in itself a monad (or indeed, a comonad like !); rather, it acts as a functor over
which the ! modality becomes a relative monad [3]. A relative monad comprises
a functor J and an object mapping T , along with an operation η : JX → TX
and a mapping from JX → TY arrows to TX → TY with axioms analogous to
the monad axioms. Thus, here J is the uniqueness modality ∗ and T the non-
linearity modality !. If one imagines the dual version of this logic where the basis
is unique, the hypothetical linearity modality would act as a functor making the
non-uniqueness modality into a relative comonad [1, 37] in much the same way.

3.2 Equational theory

One way of understanding the meaning of the LCU calculus is to see its equa-
tional theory (which we later prove sound against its operational model). The
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[Γ ], x : A ` x : A
var

Γ, x : A ` t : B

Γ ` λx .t : A( B
abs

Γ1 ` t1 : A( B Γ2 ` t2 : A

Γ1 + Γ2 ` t1 t2 : B
app

Γ1 ` t1 : A Γ2 ` t2 : B

Γ1 + Γ2 ` (t1, t2) : A⊗ B
⊗I

Γ1 ` t1 : A⊗ B Γ2, x : A, y : B ` t2 : C

Γ1 + Γ2 ` let (x, y) = t1 in t2 : C
⊗E

[Γ ] ` unit : 1
1I

Γ1 ` t1 : 1 Γ2 ` t2 : B

Γ1 + Γ2 ` let unit = t1 in t2 : B
1E

Γ, x : A ` t : B

Γ, x : [A] ` t : B
der

[Γ ] ` t : A

[Γ ] ` !t : !A
!I

Γ1 ` t1 : !A Γ2, x : [A] ` t2 : B

Γ1 + Γ2 ` let !x = t1 in t2 : B
!E

Γ ` t : ∗A
Γ ` &t : !A

borrow
Γ1 ` t1 : !A Γ2, x : ∗A ` t2 : !B

Γ1 + Γ2 ` copy t1 as x in t2 : !B
copy

∅ ` t : A

[Γ ] ` ∗t : ∗A nec

Fig. 1: Collected typing rules for LCU calculus

calculus has the standard βη-equalities for the multiplicative linear λ-calculus
fragment, which includes the following βη rules for !:

let !x = !t in t ′ ≡ [t/x ]t ′ (β!)

let !x = t in !x ≡ t (η!)

along with the following equalities on the uniqueness fragment:

copy t as x in&x ≡ t (unitR)

copy&v as x in t ′ ≡ [v/x ]t ′ (unitL)

copy t1 as x in (copy t2 as y in t3) ≡ copy (copy t1 as x in t2) as y in t3 (assoc)

The first axiom states that copying a non-linear t into a unique value x and
immediately borrowing it to be non-linear is equivalent to just t. The second
axiom states that borrowing a unique value v and copying it to a unique x in
the scope of t′ is the same as just substituting in that v for x. The last axiom
gives associativity of copying under the side condition that x is free in t3. These
equations are exactly the relative monad axioms [3], though we specialise (unitL)
slightly by restricting to values to account for the reduction semantics.

The typability of these axioms relies on the admissibility of linear and non-
linear substitution shown in Section 3.5 on the metatheory of the calculus.

3.3 Exploiting uniqueness for mutation

A key use for ensuring uniqueness of a reference is that this allows mutation
to be used safely—the original pun behind Wadler’s “Linear Types can Change
the World” [57]. To illustrate this idea, and consider its soundness in the next
section, we extend the LCU calculus with a primitive type of arrays:

A ::= . . . | Array A | N | F
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where N are natural numbers used for sizes and indices and F floating-point
values. The calculus is also extended with operations for floating-point arrays,
typed by axiomatic rules (with built-in weakening):

[Γ ] ` newArray : N( ∗(Array F)
[Γ ] ` readArray : ∗(Array F)( N( F⊗ ∗(Array F)
[Γ ] ` writeArray : ∗(Array F)( N( F( ∗(Array F)
[Γ ] ` deleteArray : ∗(Array F)( 1

These operations provide the interface for exploiting unique array references,
where writeArray performs mutation as the type system guarantees that uniquely
typed values have not been duplicated in the past (Section 3.5). We ignore out-
of-bounds exceptions as this is an orthogonal issue, which could be solved using
indexed types. We elide rules for typing numerical terms here.

Our implementation in Section 4 replays these ideas in a practical setting.
The next section gives the operational heap model for the calculus, where the
semantics of mutation is made concrete.

3.4 Operational heap model

We define an operational model for the LCU calculus to make the meaning
of uniqueness and linearity more concrete, and to prove that our type system
enforces the desired properties. The semantics is call-by-name and resembles
a small-step operational semantics but instead uses a notion of heaps, both to
capture the idea of a memory reference to arrays as well as to give a way to
track resource usage on program variables. We adapt the model of Choudhury
et al. [11], which was used to track resource usage in a pure language with graded
types. Our model applies this idea to a non-graded setting, extended to include
reference counting for uniqueness. To prove that linearity and uniqueness are
respected (soundness), the heap semantics incorporates some typing information
in order to ease the theorem statements and proofs as shown in Section 3.5.

Single-step reductions in the operational model are of the form:

H ` t  H ′ ` t ′ | Γ | ∆ (single-step judgment form)

where H is the incoming heap which provides bindings to variables that appear
in t and array allocations. The result of the reduction is a new term t ′ with an
updated heap H ′, as well as two additional pieces of information: Γ gives us
a ‘binding context’ recording the typing of any binders that were encountered
(or ‘opened’) during reduction, and ∆ gives us a ‘usage context’ containing an
account of how variables were used. Usage contexts are defined as:

∆ ::= ∅ | ∆, x : r (usage contexts) r ::= 1 | ω (usage/reference counter)

where r is a usage marker that says a variable was used either once (denoted 1)
or used more than once (denoted ω). Usage has a preorder ≤ where 1 ≤ ω.

We extend the syntax of terms with a value form a representing runtime
array references to the heap. In order to account for their type, the syntax of
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contexts is extended to include assumptions a : Array A which are treated as
a different syntactic category of variables. Additional runtime typing rules for
array reference terms a are provided akin to a variable rule (see appendix [28]).

Heaps are defined as follows akin to a context but containing two kinds of
‘allocations’ for variables x and for array references a:

H ::= ∅ | H, x 7→r(Γ ` t : A) | H, a 7→rarr (heaps)

In the case of extending the heap with a variable allocation for x , the heap records
that x can be used according to r and that it maps to a term t , along with its
typing which is only present to aid the metatheory. For brevity, we sometimes
write x 7→rt instead of x 7→r(Γ ` t : A) when the typing is not important. In the
case of an array reference a, the heap records the number of references currently
held to it, where r is again used (representing either one reference 1 or many ω),
and describes the heap-only array representation term arr pointed to by that
reference (whose syntax we introduce later along with the relevant rules).

Multiple reductions are composed from zero or more single-step reductions,
with judgments of the form H ` t ⇒ H ′ ` t ′ | Γ | ∆ given by two rules
capturing empty reduction sequences and extending a sequence at its head:

H ` t ⇒ H ` t | ∅ | ∅
refl

H ` t1  H ′ ` t2 | Γ1 | ∆1

H ′ ` t2 ⇒ H ′′ ` t3 | Γ2 | ∆2

H ` t1 ⇒ H ′′ ` t3 | Γ1, Γ2 | ∆1 +∆2
ext

In the case of ext the binding contexts are disjoint (since we treat binders as
unique in a standard way) but the usage contexts are added as follows:

∆1 + ∅ = ∅ ∆1 + (∆2, x : r) =

{
(∆1 +∆2), x : r x 6∈ dom(∆1)

(∆′1 +∆2), x : ω ∆1 = ∆′1, x : r′

i.e., if a variable x appears in both usage contexts then in the resulting context
x : ω since for the purposes of our counting we are interested in counting 0 uses
(via absence in ∆) or 1 use or many uses (ω).

Heap model The reduction rules are collected in the appendix [28], but we
explain the core rules for the single-step reduction relation here. Unlike a normal
small-step semantics, variables have a reduction, with two possibilities:

H, x 7→1t ` x  H ` t |∅ |x : 1
 var1

H, x 7→ωt ` x  H, x 7→ωt ` t |∅ |x : 1
 varω

Both reduce a variable x to the term t which is assigned to x in the heap.
In the left rule, we started out with a heap capability of 1 (linear) so after the
reduction we remove x from the heap. In the right rule, we have a heap capability
of ω (non-linear) so we preserve the assignment to x in the outgoing heap.

β-reduction is then given as follows:

Γ ` t ′ : A

H ` (λx .t) t ′  H, x 7→1(Γ ` t ′ : A) ` t | x : A | ∅
 β
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Rather than using a substitution, the body term is the result under a heap
extended with x assigned to the (typed) argument term t′. This heap binding
is given a resource capability of 1 since functions are linear. In the output, we
remember that a linear binding has been opened up in the scope of the term.
An inductive rule allows an application to reduce on the left:

H ` t1  H ′ ` t ′1 | Γ | ∆
H ` t1 t2  H ′ ` t ′1 t2 | Γ | ∆

 app

We elide the rules for products and unit which follow much the same scheme; one
congruence to evaluate the reduction of an elimination form and one to enact a
β reduction. For the ! modality, this scheme gives us the !β rule which creates a
non-linear binding of x to the term t1:

[Γ ] ` t1 : A

H ` let !x = !t1 in t2  H, x 7→ω([Γ ] ` t1 : A) ` t2 | x : [A] | ∅
 !β

The more interesting rules are for the uniqueness aspects of the language. Bor-
rowing & (which maps a unique value type ∗A to a non-linear value !A) has a
congruence rule and a reduction to enact a borrow:

H ` t  H ′ ` t ′ | Γ | ∆
H ` &t  H ′ ` &t ′ | Γ | ∆

 &

dom(H) ≡ arrRefs(v)

H,H ′ ` &(∗v)  ([H]ω), H ′ ` !v | ∅ | ∅
 &β

The action is in the right-hand rule here, where the incoming heap is split into
two parts, where H is such that it provides the allocations for all array references
in v (enforced by the premise here). The unique value ∗v is wrapped to be non-
linear in the result !v and thus all of its array references are now marked as
‘many’ via [H]ω which replaces all reference counts with ω, e.g.:

H ′, a 7→1arr ` &(∗a)  H ′, a 7→ωarr ` !a | ∅ | ∅

Thus, borrowing enacts the idea that a reference is no longer unique and may be
used many times (and hence now is a non-linear value). Copying then has three
reductions; a congruence (elided), a reduction which forces evaluation under the
non-linear modality, and a β-reduction to enact copying to a unique value:

H ` t  H ′ ` t ′ | Γ | ∆
H ` copy !t as x in t2 H ′ ` copy !t ′ as x in t2 | Γ | ∆

 copy!

Γ ` v : A dom(H ′) ≡ arrRefs(v) (H ′′, θ) ≡ copy(H ′)

H,H ′ ` copy !v as x in t  H,H ′, H ′′, x 7→1(Γ ` ∗θ(v) : ∗A) ` t | x : ∗A | ∅
 copyβ

The  copy! rule evaluates under ! so that the first term can be reduced to a
value v to be copied in the next rule. The  copyβ rule enacts copying where
dom(H ′) ≡ arrRefs(v) marks the part of the heap with array references coming
from v. Then copy(H ′) copies the arrays in this part of the heap, creating a heap
fragment H ′′ and a renaming θ which maps from the old array references to the
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references of the new copies. This renaming is applied to v in the newly bound
unique variable x. Thus the value θ(v) refers to any freshly copied arrays.

Lastly, the semantics of the array primitives uses an array representation on
the heap, where arr is some array object and arr[i ] = v indicates that the ith

element is bound to the value v, and we write a#H for an array reference a
which is fresh for heap H:

a#H

H ` newArray n  H, a 7→1arr ` ∗a | ∅ | ∅

H, a 7→r(arr[i ] = v) ` readArray (∗a) i  H, a 7→r(arr[i ] = v) ` (v , ∗a) | ∅ | ∅

H, a 7→rarr ` writeArray (∗a) i v  H, a 7→r(arr[i ] = v) ` ∗a | ∅ | ∅

H, a 7→rarr ` deleteArray (∗a)  H ` unit | ∅ | ∅
Thus newArray creates a fresh array reference a and allocates a new array on the
heap with a single reference count. The readArray and writeArray primitives work
as expected to read and destructively update the array referenced by a, whose
reference count is arbitrary but unchanged by the reduction. Lastly deleteArray
deallocates the array. Noticeably, the rules do not enforce uniqueness; but as we
see in the next section, well-typed programs preserve uniqueness of references.

3.5 Metatheory

Proofs of all the statements that follow are provided in the appendix [28]. We
first establish some key results showing the admissibility of substitution and
weakening, which are leveraged in later proofs:

Lemma 1 (Linear substitution). If Γ ′ ` t ′ : A and Γ, x : A ` t : B then
Γ ′ + Γ ` [t ′/x ]t : B.

Lemma 2 (Non-linear substitution). If [Γ ′] ` t ′ : A and Γ, x : [A] ` t : B
then [Γ ′] + Γ ` [t ′/x ]t : B.

Lemma 3 (Weakening is admissible). If Γ ` t : A then Γ, [Γ ′] ` t : A.

Next, the heap model allows us to establish the key properties of well-typed
programs respecting linearity and uniqueness restrictions. We first define when
a heap is compatible with a typing context:

Definition 3 (Heap-context compatibility). A heap H is compatible with
a typing context Γ if H contains assignments for every variable in the context
and the typing contexts of the terms in the heap are also compatible with the
heap. The relation is defined inductively as:

H ./ Γ

H, a 7→rarr ./ Γ, a : Array A
Ref

H ./ (Γ1 + Γ2) Γ2 ` t : A x 6∈ dom(H)

(H, x 7→r(Γ2 ` t : A)) ./ (Γ1, x : A)
Lin

∅ ./ ∅
Empty

H ./ (Γ1 + [Γ2]) [Γ2] ` t : A x 6∈ dom(H)

(H, x 7→ω([Γ2] ` t : A)) ./ (Γ1, x : [A])
ω
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Thus, a heap compatible with Γ1, x : A contains an assignment for x marked with
a usage annotation r which can be either 1 for linear or ω for non-linear use. Note
that non-linear values can be used linearly, as captured by dereliction (the der
typing rule). However, a non-linear assumption must have a heap assignment
marked with ω (rule ω), where the dependencies of the assigned term t must all
be non-linear in the remaining compatibility judgment on the rest of the heap.

From a heap (and likewise from a typing context) we can also extract usage
information. This is useful for focusing on resource usage as follows:

Definition 4 (Usage context extraction). For a context Γ or heap H we
can extract usage information denoted Γ or H defined as:

∅= ∅ (Γ, x : [A]) = Γ , x : ω (Γ, a : A) = Γ (Γ, x : A) = Γ , x : 1

∅= ∅ (H, x 7→r(Γ ` t : A)) = H, x : r (H, a 7→rt) = H

We now give the two main theorems about our calculus which give us the proper-
ties that linearity is respected (called conservation, Theorem 4) and that unique-
ness is respected (Theorem 5).

Theorem 4 (Conservation). For a well-typed term Γ ` t : A and all Γ0 and
H such that H ./ (Γ0 + Γ ) and a reduction H ` t  H ′ ` t ′ | Γ1 | ∆ we have:

∃Γ ′. Γ ′ ` t ′ : A ∧ H ′ ./ (Γ0 + Γ ′) ∧ (H ′ +∆) v (H,Γ1)

The first conjunct is regular type preservation, linked with heap compatibility in
the second conjunct. The last conjunct expresses the core of conservation: that
resource usage accrued in this reduction, given by ∆, plus remaining resources
given in the heap H ′ are approximated (via v, the pointwise lifting of ≤) by the
original resources given in the heap H plus the specification of the resources from
any variable bindings Γ1 encountered along the way. The context Γ0 accounts
for bindings not described by Γ , and is key to the inductive proof of this result.

We then establish that all heap references have only one reference to them
at the end of execution.

Theorem 5 (Uniqueness). For a well-typed term Γ ` t : ∗A and all Γ0 and
H such that H ./ (Γ0 + Γ ) and given a multi-reduction to a value H ` t ⇒
H ′ ` ∗v | Γ ′ | ∆, for all a ∈ arrRefs(v) (array references in v) we have:

a 7→1t ′ ∈ H =⇒ ∃t′′.a 7→1t ′′ ∈ H ′ ∧ a 6∈ dom(H) =⇒ ∃t′′.a 7→1t ′′ ∈ H ′

i.e., any array references contributing to the final term that are unique in the
incoming heap stay unique in the resulting term, and any new array references
contributing to the final term are also unique.

Notice that there is a certain duality between the conservation theorem and
the uniqueness theorem which mirrors the weak duality between linearity and
uniqueness. The statement of conservation is a generalised way to say that if a
variable is linear then it will always be used in a linear way, or in other words that
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linearity restrictions will always be upheld; conversely, the uniqueness theorem
tells us that if a variable is unique then it must always have been used in a
unique way, or in other words that it does not have multiple references.

One important point to notice is that the additional rules (borrow and copy)
that we include for unique types are in fact trivial cases when it comes to the
uniqueness theorem since they can never output a value with a unique type.
This makes sense as the idea behind these additional rules is to mediate the
interaction between uniqueness and non-uniqueness, and this interaction can
only ever go in the direction of producing values that are non-unique.

A sub-result of conservation is type preservation which is complemented by
a separate progress result in Theorem 6 to give syntactic type safety:

Theorem 6 (Progress). Values of the heap model v are given by:

v ::= (t1, t2) | unit | ∗t | !t | λx .t | i | a | p (value terms sub-grammar)

where p are partially-applied primitives, e.g., newArray, readArray, readArray (∗a).
Given Γ ` t : A, then t is either a value, or if H ./ Γ0+Γ there exists a heap H ′,
term t ′, usage context ∆, and context Γ ′ such that H ` t  H ′ ` t ′ | Γ ′ | ∆.

Finally, we see that the operational semantics, extended to full β-reduction
(i.e., all congruences), supports the equational theory:

Theorem 7 (Soundness with respect to the equational theory). For all
t1, t2 such that Γ ` t1 : A and Γ ` t2 : A and t1 ≡ t2 and given H such that
H ./ Γ , there exists a value (irreducible term) v and Γ1, Γ2, ∆1, ∆2 such that
there are full β-reductions to the same value

H ` t1 ⇒β H
′ ` v | Γ1 | ∆1 ∧ H ` t2 ⇒β H

′ ` v | Γ2 | ∆2

4 Implementation

4.1 Frontend

The implementation of uniqueness types in Granule follows much the same pat-
tern as the logic defined earlier. Granule already possesses a semiring graded
necessity modality, where for a pre-ordered semiring (R, ∗, 1,+, 0,v), there is a
family of types {�Ar}r∈R. We represent the ! from linear logic (and our calculus)
via the pre-ordered semiring {0, 1, ω} (none-one-tons [30]) with !A = �Aω.7

The semiring is defined with r+s = r if s = 0, r+s = s if r = 0 and otherwise
ω, and r ∗ 0 = 0 ∗ r = 0, r ∗ ω = ω ∗ r = ω (for r 6= 0), and r ∗ 1 = 1 ∗ r = r
with ordering 0 v ω and 1 v ω. This semiring allows us to represent both linear
and non-linear use: variables graded with 1 must be used linearly, with 0 must
be discarded, and a grade of ω permits unconstrained use à la linear logic’s !.

7 It may not seem obvious that such a graded modality does exactly represent the
behaviour of linear logic’s !, and in fact capturing the precise behaviour of ! does
require some additional semiring structure which is present in Granule [22].
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Fig. 2: Relationship between various flavours of substructural types demonstrat-
ing how they can all be represented using Granule’s expressive modalities.

(In Granule, �Aω can be written as the type A [Many], but we syntactically
alias this to !A for simplicity and ease of understanding.)

As in LCU, uniqueness is represented by a new modality, which we call ∗ to
match the calculus (and so that the syntax of programs involving uniqueness will
be familiar to Clean users). The uniqueness modality wraps a value that behaves
‘linearly’ (and so cannot be duplicated or discarded), with the key difference
being that we provide primitive functions which allow ! to act as a relative
monad over unique values. The primitives have the following type signatures:

Granule

1 uniqueReturn : ∀ {a : Type} . *a → !a -- borrow

2 uniqueBind : ∀ {a b : Type} . (*a → !b) → !a → !b -- copy

The uniqueReturn function here implements the borrow rule from the calcu-
lus (acting as the ‘return’ of the relative monad), and similarly the uniqueBind

function implements the copy rule (acting as the ‘bind’).

We provide syntactic sugar for both of these primitives for convenience, with
syntax designed to evoke the rules from the LCU calculus; &x is equivalent
to writing uniqueReturn x, while clone t1 as x in t2 is equivalent to writing
uniqueBind (λx → t2) t1.8 A simple example of uniqueness types in action is
given below, to demonstrate the idea.

Granule

1 sip : *Coffee → (Coffee, Awake)

2 sip fresh = let !coffee = &fresh in (keep coffee, drink coffee)

Here, borrowing (&) converts the unique Coffee value into an unrestricted one,
so that it can be duplicated and used twice for the two separate functions. Note
however that the uniqueness guarantee is lost in the process, so both of the
output values are non-unique (linear, in this case).

Figure 2 illustrates the relationship between uniqueness, linearity and other
common forms of substructural typing in the resulting system.

8 In the implementation we use ‘clone’ rather than ‘copy’, as the name ‘copy’ is often
used elsewhere in Granule, e.g. for the non-linear function which duplicates its input.
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We implemented a built-in library for primitive floating point arrays in Granule,
matching the interface for arrays of floats that was introduced as an extension
to the LCU calculus in Section 3.3, with operations typed as follows:

Granule

1 newFloatArray : Int → *FloatArray

2 readFloatArray : *FloatArray → Int → (Float, *FloatArray)

3 writeFloatArray : *FloatArray → Int → Float → *FloatArray

4 deleteFloatArray : *FloatArray → ()

The writeFloatArray primitive updates an array destructively in place since we
have a guarantee that no other references exist to the array which has been passed
in. In the next section, we use this set of primitives to evaluate the performance
of our implementation, by measuring the performance gains from allowing for
in-place updates in this fashion. We have another set of immutable primitives
akin to the above (but written with a suffix I) which work with non-unique
arrays, e.g. readFloatArrayI : FloatArray → Int → (Float, FloatArray), and
thus do not perform mutation.

The following shows an example of clone, where a new array is borrowed and
a copy of this borrowed FloatArray on line 3 is deleted, leaving the original (now
immutable) instance of the array unaffected on line 4:

Granule

1 let x = newFloatArray 10 in

2 let [y] = &x in

3 let [()] = clone [y] as y' in (let () = deleteFloatArray y' in [()])

4 in readFloatArrayI y 10

4.2 Compilation and Evaluation

As part of our implementation of uniqueness types in Granule, as described in
Section 4.1, we also implemented a simple compiler that translates programs
into Haskell. This compiler preserves the value types, but erases all of Gran-
ule’s substructural types (linear, unique, graded, etc.). As a result, we can take
advantage of both Granule’s flexible type system and Haskell’s libraries and
optimizing compiler. For this paper, all performance results were measured by
compiling Granule programs to Haskell, and compiling the resulting Haskell with
GHC 9.0.1. The measurements were collected on an ordinary MacBook with a
2 GHz quad-core Intel i5 processor and 16 GB of RAM.

As mentioned in Section 1, one motivation for using uniqueness types is to do
the kind of in-place mutation necessary for efficient programming with arrays.
To check that our implementation is reasonable, we carried out an evaluation
using an array processing benchmark. The benchmark recursively allocates and
sums up lists of arrays of various sizes, with the goal of demonstrating the
benefits of uniqueness types for arrays in functional programming. Each iteration
of the benchmark allocates a list of a thousand arrays, populates the arrays with
values, then traverses the list to sum them up. We prepared two versions of this
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Fig. 3: Performance of mutable vs. immutable arrays in Granule. Lower is better.

benchmark: one with functional in-place updates and manual (safe) deletion of
unique arrays, and one with non-unique, immutable, garbage collected arrays
and updates via copying. The overall performance of these two benchmarks is
shown in Figure 3, with lower bars/numbers representing better performance.
The results, while not surprising, do confirm that array-handling is generally
more efficient when in-place mutation is allowed. Additionally, in Figure 3, we
compared the time spent in garbage collection between the two versions of the
benchmark. Because our implementation allocates unique data outside of GHC’s
heap, and uniqueness types allow programmers to directly de-allocate objects in
memory, the unique version of the benchmark spends significantly less time in
garbage collection. For this benchmark, the unique arrays are outside of the
garbage collected heap and directly de-allocated, while other incidental objects
(closures, lists, and so on) are still handled by the garbage collector.

Of course, this is a somewhat contrived benchmark. Real-world Haskell li-
braries, for example, typically provide functional high-level interfaces for array
manipulation while using unsafe code to mutate arrays internally. The popular
vector library9 is one example, and repa [25] is another. Additionally, there is
significant prior work on improving the efficiency of functional programs oper-
ating on arrays (for example, using combinators like map and fold along with
aggressive fusion [13,25,27]), which we will not dwell on. The main point is that,
at some stage, arrays must be mutated. Rather than having this happen through
unsafe code, or via external C or Fortran, uniqueness types give us a way to do
that mutation directly in our functional language, efficiently and safely.

Crucially, in these comparisons, all versions of the programs are implemented
in the same language: Granule. With our extensions, the language is expressive
enough to encompass a variety of programming approaches. Functional program-
mers may freely mix and match from a variety of options for data management
and manipulation. Object lifetimes may be either manually or automatically
managed, and object contents may allow in-place mutation or be immutable.

9 https://hackage.haskell.org/package/vector
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5 Related Work

Uniqueness types are most well known for their appearance in the Clean lan-
guage [40, 47], where they are used in lieu of monadic computation and for
the efficiency gains offered by in-place update. In Clean, computation is based
on graph rewriting and reduction; constants such as numbers are graphs, and
functions are graph rewriting formulas. This gives the type system a rather dif-
ferent feel to those offered by more recent functional programming languages,
and makes it more difficult to capture the benefits of Clean-style uniqueness in
a modern setting, hence the value in our pursuit of this goal.

Some theoretical groundwork for Clean’s uniqueness types has certainly been
developed over the years, particularly in works by de Vries among others [55,56];
these papers aim to clarify the distinction between Clean’s type system and
systems based on the λ-calculus. Further work makes headway on the problem of
distinguishing uniqueness from other substructural systems [53,54]. This follows
a similar theoretical approach to the one demonstrated in our paper; such ideas
for limited settings inspired the groundwork for our system, which is more general
and has a practical implementation.

Other languages (old and new) featuring uniqueness types include Single-
Assignment C [45], Mercury [48] and Cogent [35].

Ownership was first developed as a framework for understanding aliasing
in object-oriented languages [34], and is intended to give a high-level structural
view of objects and references in much the same way that powerful type systems
give a high-level structural view of data. Ownership is now most familiar due
to being pervasive in the Rust programming language, for which multiple for-
malisations have been attempted; RustBelt [24] gives a lower-level encoding of
Rust intended for formal verification while Oxide [64] is a higher-level encoding
designed for more theoretical work, among others [39]. Extending these ideas to
other languages is an active area of research; RefinedC [44] is one example.

Regions have been used over the years in the context of effect systems [23,
26]. One of the primary motivations of research into region types was their
application in region-based memory management [51], which aimed to bring some
of the benefits of traditional stack-based memory management to higher-order
functional languages. Regions divide values based on their lifetimes, so a system
with region types can safely allocate and de-allocate memory for values based
on region type information, eliminating the need for garbage collection.

Early on, regions were restricted to have LIFO (last-in, first-out) lifetimes
which followed the block structure of a language, but later work relaxed this
constraint using uniqueness (see: static capabilities [63] and Cyclone [21]); a
unique reference to a region ensures there are no aliases to the region, and that
it can therefore be promptly de-allocated. Additionally, regions themselves act
as a way to control aliasing, and can be thought of as equivalence classes for a
“may alias” relation—in other words, values which do not share a region may not
alias with one another, and so if a value does not share a region with anything
else then it may be safely mutated in place.
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Work on Cyclone [14] demonstrated the relationship between regions and
unique pointers, observing that “unique pointers are essentially lightweight, dy-
namic regions that hold exactly one object.” Beyond that, Rust’s lifetimes are
heavily based on regions, and there exists an extension of ML called Affe [43]
which aims to support both linearity and borrowing using regions.

Capabilities are tokens that a function must possess in order to be able to
access a particular location in memory. Capabilities are linear, and cannot be
duplicated or discarded, in order to prevent them from being forged [17]. Im-
plementations exist for various object-oriented languages such as Java [2] and
Scala [19]; more functional languages taking inspiration from the idea of capabil-
ities also exist [33,41]. Recent work on linear constraints for Haskell [49], which
hopes to allow for something similar to borrowing within the framework of linear
Haskell, also descends from work on capabilities. Ambient capabilities can also
be internalised as a comonad to capture purity within an impure language [12].

6 Future Work

Ownership via fractional permissions Though Granule can now represent
values with both linear and unique types, the language allows for much more
fine-grained analysis of resourceful data via grading. For instance, we can replay
our earlier non-linearity example but with some extra information in the types:

Granule

1 accurate : Cake [2] → (Happy, Cake)

2 accurate [cake] = let extra = have cake in (eat cake, extra)

Instead of an infinite amount of cake we specify that we have exactly two cakes;
the cake on the right-hand side must be linear as we only have one usage re-
maining. If we used the input three times we would receive a type error.

Given that we can move beyond the simple binary view of linear and non-
linear, one might suspect that we could track the quantity of existing references
to a value more accurately than just unique or non-unique. We propose taking
inspiration here from Boyland’s notion of fractional permissions [8].

The purpose of fractional permissions is to allow multiple readers to access
the same resource without losing the ability to later gain unique write access. A
“permission” can be split up, allowing read-only access to multiple consumers,
and then later recombined (while ensuring no other permissions still exist).

To relate these with our calculus, let us hypothesise that ∗1 P is a ‘com-
plete’ unique value that we can read from or write to, and that we can split up
arbitrarily into ‘fractionally’ unique values ∗n P where 0 < n ≤ 1, as follows:

∗n P ⊗ ∗m P ←→ ∗n+m P

As with fractional permissions, fractional values must only be used for behaviour
that does not involve mutation, because whilst a value is only fractionally unique
we cannot guarantee that other references do not exist. We should only regain
this ability if we recombine the guarantees into a complete ∗1 P .
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This model closely resembles ownership as in Rust [24] – we can think of a value
of type ∗n P for n < 1 as being equivalent to a Rust-style &P which is a borrowed
value that we cannot mutate.10 When a value has been borrowed the original
value cannot be written to until we are finished with the borrows, much like we
would need to collect all the fractionally unique values back together to get back
to our original unique ∗1 P . Being able to more closely model Rust’s powerful
ownership system would make this a fruitful avenue for future research.

Linear Haskell Granule’s linear basis and assortment of modalities allows for a
particularly natural embedding of the LCU calculus, but this does not preclude
the theory of this paper from being applied in other contexts. One particularly
valuable setting to consider would be Haskell, which as of GHC 9 already has
linear types based on an underlying graded system called λq→.

Haskell’s graded representation of linearity involves function types (a %r -> b)

which have a multiplicity annotation r; at present, this can be either 'One (linear)
or 'Many (unrestricted). But λq→ is designed to be extensible, and the possibility
of introducing additional multiplicities is welcomed [7,49].

The original paper on linear Haskell [7] mentions that “linear types are con-
ceptually simpler than uniqueness type systems, giving a clearer path to im-
plementation in GHC”, and also that “functional languages have more use for
fusion than in-place update”. Our clarification of the relationship between lin-
earity and uniqueness demonstrates that not only are uniqueness types no more
complex conceptually than linear ones, they can comfortably sit alongside one
another in a single calculus; our evaluation demonstrates that while linearity is
certainly useful, there are still further practical benefits to be gained from intro-
ducing uniqueness into a language with linear types. Perhaps these contributions
will begin to forge a path towards a future for Haskell where linear types and
uniqueness types can both be leveraged for their respective strengths.

Adjoint models Benton’s linear/non-linear (LNL) logic [6] consists of two
fragments: intuitionistic (non-linear) logic Φ `I X and a mixed fragment of
intuitionistic linear logic with non-linear hypotheses Φ, Γ `L A. These two frag-
ments are connected by a pair of modalities Lin(X) and Mny(A), which form
an adjunction; the ! modality can then be recovered by !A = Lin(Mny(A)).

Breaking the ! modality into two and allowing linear logic to be mixed with
non-linear logic has been a valuable endeavour, and so a natural question is
whether it is possible to build an LNL-style adjoint model for our unified LCU
calculus. It seems plausible that building an adjoint model for just uniqueness
logic would not be too difficult; this would be very similar to the LNL model but
with the adjunction moving in the opposite direction, and the monadic modality
◦ from uniqueness logic could be represented in much the same way that the
comonadic ! can be recovered in LNL.
10 Rust also includes mutable borrows, which allow the borrower to both read from and

write to their borrowed reference. These are a much closer analogue to our current
non-fractional calculus, since mutable borrows must be unique.
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An adjoint model for the full LCU calculus would be more interesting. This
would most likely involve three fragments, two of which would be symmetric
monoidal categories (for unique and linear values) and one of which would be a
Cartesian closed category (for unrestricted values), with two adjunctions allow-
ing values to flow from unique to unrestricted to linear as we might hope.

Ordered and dependent types As expressive as Granule’s type system may
be, there are opportunities for enforcing stronger properties on programs else-
where in the landscape of type theories. One possibility is that in addition to
restricting contraction and weakening, it is also possible to restrict exchange,
giving ordered type theories which correspond to noncommutative logic.

Such systems can be used to model stack-based memory allocation (as op-
posed to heap-based), since without exchange an object may only be used when
it is at the top of the stack [10,62]. But much like linearity, these systems restrict
the use of exchange in the future; is there an equivalent of uniqueness for ordered
types which guarantees that exchange has never been applied in the past, and
could this be useful for tracking references on the stack?

Another possibility is to bring uniqueness into the realm of dependent types.
Recent work on graded modal dependent type theory (GrTT) [31] allows for
capturing requirements on variable usage at both the type and computation
levels; grades come in pairs, where the first component is the computation-level
grading and the second component is the type-level grading. Strictly linear usage
in types is rare – is there value in being able to represent uniqueness here?

7 Conclusion

Linearity and uniqueness are both well-studied concepts with similar substruc-
tural foundations, but differing benefits; linearity enables the careful manage-
ment of resourceful data, while uniqueness offers the possibility of safe in-place
updates. By formalising the relationship between these two ideas, building on
two distinct bodies of literature, we have shown that there is value in having
both linear and unique types in the same type system. This could be a first step
on the road towards properly understanding the relationships between more ad-
vanced substructural type systems, such as the fine-grained resource tracking of
Granule and Idris and the complex memory management provided by Rust.

Moreover, we implemented this system in the graded modal setting of the
Granule language and provided benchmarks to demonstrate the efficiency gains
that can be accessed via adding uniqueness to a language that already has a linear
basis. The opportunities to incorporate uniqueness types into languages outside
of Granule are apparent, and this paper offers both a theoretical underpinning for
uniqueness as it relates to linearity as well as clear validation of the performance
benefits that a system which unifies linearity and uniqueness can offer.
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Operationen. Ph.D. thesis, Institut für Informatik und Praktische Mathematik,
Christian-Albrechts-Universität, Kiel, Germany (1996), https://www.sac-home.
org/ media/publications:pdf:sac-design-sbs-phd-96.pdf, Shaker Verlag, Aachen,
1997

46. Selinger, P., Valiron, B.: Quantum Lambda Calculus, p. 135–172. Cambridge Uni-
versity Press (2009). https://doi.org/10.1017/CBO9781139193313.005

47. Smetsers, S., Barendsen, E., van Eekelen, M., Plasmeijer, R.: Guaranteeing safe
destructive updates through a type system with uniqueness information for
graphs. In: Schneider, H.J., Ehrig, H. (eds.) Graph Transformations in Com-
puter Science. pp. 358–379. Springer Berlin Heidelberg, Berlin, Heidelberg (1994).
https://doi.org/10.1007/3-540-57787-4 23

48. Somogyi, Z., Henderson, F., Conway, T.: The execution algorithm of Mercury,
an efficient purely declarative logic programming language. The Journal of Logic
Programming 29(1), 17–64 (1996). https://doi.org/10.1016/S0743-1066(96)00068-
4, https://www.sciencedirect.com/science/article/pii/S0743106696000684, high-
Performance Implementations of Logic Programming Systems

49. Spiwack, A., Kiss, C., Bernardy, J.P., Wu, N., Eisenberg, R.: Linear constraints
(2021), https://arxiv.org/abs/2103.06127

50. Terui, K.: Light affine lambda calculus and polytime strong normalization. In:
LICS ’01. pp. 209–220. IEEE Computer Society (2001)

51. Tofte, M., Birkedal, L., Elsman, M., Hallenberg, N.: A Retrospective on Region-
Based Memory Management. Higher-Order and Symbolic Computation 17(3),
245–265 (Sep 2004). https://doi.org/10.1023/B:LISP.0000029446.78563.a4

52. Tov, J.A., Pucella, R.: Practical affine types. In: Proceedings of the 38th Annual
ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages.
p. 447–458. POPL ’11, Association for Computing Machinery, New York, NY, USA
(2011). https://doi.org/10.1145/1926385.1926436

53. de Vries, E.: Modelling unique and affine typing using polymorphism. In: Essays
Dedicated to Rinus Plasmeijer on the Occasion of His 61st Birthday on The Beauty
of Functional Code - Volume 8106. p. 181–192. Springer-Verlag, Berlin, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-40355-2 13

54. de Vries, E., Francalanza, A., Hennessy, M.: Uniqueness typing for resource
management in message-passing concurrency. In: Florido, M., Mackie, I. (eds.)
Proceedings First International Workshop on Linearity, LINEARITY 2009,
Coimbra, Portugal, 12th September 2009. EPTCS, vol. 22, pp. 26–37 (2009).
https://doi.org/10.4204/EPTCS.22.3

55. de Vries, E., Plasmeijer, R., Abrahamson, D.M.: Uniqueness typing redefined. In:
Proceedings of the 18th International Conference on Implementation and Appli-
cation of Functional Languages. p. 181–198. IFL’06, Springer-Verlag, Berlin, Hei-
delberg (2006)

56. de Vries, E., Plasmeijer, R., Abrahamson, D.M.: Uniqueness typing simplified.
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